Enhanced Fuzzy Systems for Type 2 Fuzzy and their Application in Dynamic System Identification
نویسندگان
چکیده
The paper proposes a novel fuzzy system structure to enhance the performance of fuzzy neural network systems. The structure of enhanced fuzzy system (EFS) is to decompose each fuzzy variable into fuzzy subsystems called component fuzzy systems to act as type 2 fuzzy, and each component fuzzy system is based on one traditional fuzzy set with one pair of symmetry fuzzy sets. In addition, in order to illustrate the performance of EFS, the paper utilizes the common back propagation learning algorithm for neural networks in the identification of dynamic systems. From simulation results, it is evident that the proposed EFS have much faster convergent speed in terms of epochs in the tracking model and better testing error than those of using other identification methods.
منابع مشابه
Fault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator
Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...
متن کاملDesign of robust carrier tracking systems in high dynamic and high noise conditions, with emphasis on neuro-fuzzy controller
The robust carrier tracking is defined as the ability of a receiver to determine the phase and frequency of the input carrier signal in unusual conditions such as signal loss, input signal fading, high receiver dynamic, or other destructive effects of propagation. An implementation of tight tracking can be understood in terms of adopting a very narrow loop bandwidth that contradict with the req...
متن کاملA New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملA Dynamic Fuzzy Expert System Based on Maintenance Indicators for Service Type Selection of Machinery
Due to the multiplicity of standards and complex rules; maintenance, repair and servicing of machinery could be done only by the fully qualified and proficient experts. Since the knowledge of such experts is not available all times, using expert systems can help to improve the maintenance process. To address this need and the uncertainty of the maintenance process indicators, this research prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015